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A thermodynamic argument is proposed in order to discuss the most appropriate form of the local energy
balance equation within the Oberbeck–Boussinesq approximation. The study is devoted to establish the
correct thermodynamic property to be used in order to express the relationship between the change of
internal energy and the temperature change. It is noted that, if the fluid is a perfect gas, this property
must be identified with the specific heat at constant volume. If the fluid is a liquid, a definitely reliable
approximation identifies this thermodynamic property with the specific heat at constant pressure. No
explicit pressure work term must be present in the energy balance. The reasoning is extended to the case
of fluid saturated porous media.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The Oberbeck–Boussinesq approximation, so named after the
pioneering works by Oberbeck [1] and Boussinesq [2], is the basis
of most of the contemporary studies on natural or mixed convec-
tion flows. Very interesting historical surveys on the origins of this
approximation are available in the recent papers by Zeytounian [3]
and Bois [4].

Although the nature of this approximation is very clear and
unambiguous with reference to the mass and momentum balance
equations for the fluid, the formulation of the approximated energy
balance equation is not so definite and univocal. The questions
concerning the energy balance equations are the following:

(A) Which is the specific heat involved in the energy balance?
(B) Is there a pressure work term in the energy balance, propor-

tional to the convective derivative of the pressure field?

The textbooks on fluid dynamics and heat transfer generally
give clear answers to these questions. The problem, as it will be
discussed in Section 3, is that the answers are different.

In a recent technical note [5], the present author carried out a
first analysis of the existing formulations of the local energy bal-
ance adopted in the Oberbeck–Boussinesq approximation of buoy-
ant flows.

The purpose of this short paper is to extend the analysis per-
formed in Ref. [5] in order to point out the manifold nature of
the energy balance formulations, within the framework of the
Oberbeck–Boussinesq approximation, available in the literature.
ll rights reserved.
Then, a thermodynamic argument is proposed in order to give an-
swers to questions (A) and (B). In particular, it will be concluded
that the answer to question (A) depends on the fluid being a liquid
or a gas. For a perfect gas the answer to question (A) is definitely:
‘‘the specific heat at constant volume cv”. For a liquid the answer to
question (A) is less definite, but sufficiently reliable: ‘‘the specific
heat at constant pressure cp”. The answer to question (B) is: ‘‘no
pressure work term appears in the energy balance”. In a final sec-
tion, the analysis of the energy balance is applied to the topic of
buoyant flows in fluid saturated porous media.
2. Mass and momentum balance

As is well known, the Oberbeck–Boussinesq approximation im-
plies that the local mass and momentum balance equations be
written as

@ui

@xi
¼ 0; ð1Þ

Dui

Dt
¼ � 1

q0

@pe

@xi
� ðT � T0Þbgi þ mr2ui; ð2Þ

where the summation over repeated indices is assumed. In Eq. (2),
D=Dt is the substantial or convective derivative. In Eqs. (1) and (2),
the properties m and b are referred to the temperature T0. The impli-
cit assumptions behind Eqs. (1) and (2) are that: pe ¼ p� q0gixi is
the excess over the hydrostatic pressure, and that one considers
the density as coincident with the reference value q0 except for
the gravitational body force term. For that term, the density q is as-
sumed to be a function of the temperature only, thus considering
the dependence on the pressure as negligible. The linear equation
of state
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Nomenclature

c thermodynamic property, Eqs. (11) and (13)
cp; cv specific heat at constant pressure, specific heat at

constant volume
Dij strain tensor, Eq. (5)
D=Dt substantial or convective derivative
e internal energy per unit mass
gi gravitational acceleration
h enthalpy per unit mass
H inter-phase heat transfer coefficient
k thermal conductivity
p pressure
pe excess over the hydrostatic pressure
qi heat flux density
t time
T temperature
T0 reference temperature
ui velocity
Vi seepage velocity

xi position vector

Greek symbols
b isobaric coefficient of thermal expansion
jT coefficient of isothermal compressibility
l dynamic viscosity
m kinematic viscosity
q density
q0 reference density
rij stress tensor
u porosity
U dissipation function for a porous medium

Superscripts, subscripts
s; f solid, fluid
m average property
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qðTÞ ¼ q0½1� bðT � T0Þ� ð3Þ

is implicitly invoked in Eq. (2). In Eq. (3), the dependence on T is as-
sumed to be sufficiently weak to be approximated linearly in the
surroundings of the reference value T0.

3. Energy balance

For the energy balance, the formulation of the Oberbeck–
Boussinesq approximation is not so definite in the literature. In
fact, one may have Chandrasekhar’s [6] and White’s [7]
formulation

q0cv
DT
Dt
¼ kr2T þ 2lDijDij; ð4Þ

where Dij is the strain tensor

Dij ¼
1
2

@uj

@xi
þ @ui

@xj

� �
: ð5Þ

The source term in Eq. (4), 2lDijDij, is the thermal power generated
by the viscous dissipation.

One may have the enthalpy formulation [8,9]

q0cp
DT
Dt
¼ kr2T þ 2lDijDij þ bT

Dp
Dt

; ð6Þ

where the last term on the right hand side is an additional source
term: the pressure work acting on the fluid element.

Finally, one may have Landau–Lifshitz’s [10], Bejan’s [11] and
Kundu–Cohen’s [12] formulation

q0cp
DT
Dt
¼ kr2T þ 2lDijDij: ð7Þ

In order to decide on the correct expression of the energy balance,
let us write the general non-approximated form of this balance
[6,13], i.e. the local version of the First Law of thermodynamics

q
De
Dt
¼ � @qi

@xi
þ rijDij; ð8Þ

where e is the internal energy per unit mass, rij is the fluid stress
tensor and qi ¼ �k@T=@xi is the heat flux density. The meaning of
the terms on the right hand side of Eq. (8) is straightforward: the
first term is the incoming heat flux contribution to the energy
change, while the second term is the mechanical work input due
to the forces acting on the boundary of the fluid element. The latter
term depends only on mechanical quantities, i.e. on the velocity and
pressure fields within the fluid domain. On the other hand, the eval-
uation of the energy change on the left hand side of Eq. (8) implies
the use of thermodynamics.

Thermodynamics ensures that e ¼ eðT;qÞ for every single-phase
or two-phase stable equilibrium states. In the special case of a per-
fect gas, it is well known that e ¼ eðTÞ [14], so that

de ¼ cvdT: ð9Þ

In the case of either a liquid or a real gas, one must rely on the
Oberbeck–Boussinesq approximation by assuming that an approxi-
mate equation of state q ¼ qðTÞ can be applied. This implies that
the pressure of the fluid does not change appreciably. Since
q ¼ qðTÞ and since the pair ðT;qÞ yields a unique stable equilibrium
state, then one concludes that all the thermodynamic properties
may be considered as functions of T. This conclusion holds for the
internal energy per unit mass, so that a relationship

de ¼ cdT ð10Þ

can be established. The thermodynamic coefficient c, in general,
does not coincide either with cv or with cp. In fact, c is the total
derivative of the function e ¼ eðT;qðTÞÞ with respect to T, and not
the partial derivative of e ¼ eðT;qÞ with q kept constant. As is well
known, the latter is the correct thermodynamic definition of cv [14].
The equation of state q ¼ qðTÞ is one regarding a set of stable equi-
librium states of the fluid with approximately the same pressure.
Then, one has

c ¼ @e
@T

� �
p

: ð11Þ

Eq. (11) is not the definition of the specific heat at constant pressure
cp. As is well known [14], the latter is defined as

cp ¼
@h
@T

� �
p
; ð12Þ

where h ¼ eþ p=q is the enthalpy per unit mass. Then, one can eas-
ily write the following relationship:

c ¼ cp �
pb
q
; ð13Þ
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where the definition of the coefficient of isobaric expansion

b ¼ � 1
q

@q
@T

� �
p

ð14Þ

has been used. Then, c is smaller than cp and differs from cv , except
for the limiting case of a perfect gas. Indeed, in the latter case, one
can easily show that the equation of state of the perfect gas and Eq.
(13) ensure that c ¼ cv , so that Eqs. (9) and (10) are perfectly
consistent.

With reference to a Newtonian fluid and on account of Eq. (1),
one may express rijDij ¼ 2lDijDij. Then, by employing Eq. (10),
by replacing q with q0 and by assuming k ¼ constant, Eq. (8) can
be approximated as

q0c
DT
Dt
¼ kr2T þ 2lDijDij: ð15Þ

In Eq. (15), the value of the thermodynamic coefficient c, given by
Eq. (13), is referred to the temperature T0 like any other fluid prop-
erty involved in the Oberbeck–Boussinesq system of governing
equations. Eq. (15) coincides with Eq. (4) only for the limiting case
of a perfect gas and differs from Eq. (7) as c < cp.

One can question the extent to which cp and cv differ from c in
the case of liquids. For water at atmospheric pressure, a precise
evaluation of the discrepancies ðcp � cÞ=cp; ðc � cv Þ=cv and
ðcp � cv Þ=cp can be done by means of the data reported in Appendix
C of Bejan’s textbook [11]. In fact, on account of Eq. (13), one has

cp � c
cp

¼ pb
qcp

;
c � cv

cv
¼

q cp � cv
� �

� pb

qcv
¼

q cp � cv
� �

� pb

qcp � q cp � cv
� � : ð16Þ

Fig. 1 evidently suggests that the discrepancy ðc � cvÞ=cv is rather
close to ðcp � cvÞ=cp and that ðcp � cÞ=cp is much smaller. Fig. 2
shows that ðcp � cÞ=cp is, on average, of order 10�5. As a conse-
quence, for water at atmospheric pressure, the approximation

c ffi cp ð17Þ

is a definitely reliable one. In general, it is not easy to find data for
the specific heat at constant volume of a liquid. Usually, thermody-
namic tables report the values of cp, while cv is evaluated from the
Mayer relationship [14]
[T
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Fig. 1. Comparison of c with cp and cv
cp � cv ¼
b2T
qjT

; ð18Þ

where jT is the coefficient of isothermal compressibility,

jT ¼
1
q

@q
@p

� �
T
: ð19Þ

On account of Eqs. (16) and (18) and of the data reported in Refs.
[14,15], one may evaluate the discrepancies ðcp � cÞ=cp; ðc � cvÞ=cv

and ðcp � cvÞ=cp for some organic liquids at 25 �C and atmospheric
pressure. These data are reported in Table 1. This table suggests
again that Eq. (17) is definitely reliable with an error smaller than
0:009%, while the approximation c ffi cv would lead to an error
higher than 35%.

4. Possible pitfalls

In the preceding section, a thermodynamic strategy has been
established to determine the most appropriate formulation of the
local energy balance equation within the Oberbeck–Boussinesq
approximation. The basis of this approach is twofold.

� The convective derivative of the internal energy per unit mass,
De=Dt, is evaluated by considering the thermodynamic process
undergone by the fluid element. This process can be reliably
modeled as an isobaric process.

� The mechanical work input rijDij is evaluated according to the
stress–strain relationship for a Newtonian fluid, as well as to
the constraint @ui=@xi ¼ 0 satisfied by the velocity field.

In the light of these arguments, three possible pitfalls that can
be encountered in the determination of the local energy balance
equation are described in the following.

4.1. The isochoric process

One could say that the convective derivative De=Dt can be eval-
uated by assuming that the fluid element is undergoing an iso-
choric thermodynamic process [6]. Therefore the validity of Eq.
(9) is extended, not only to the perfect gases, but to every fluid sys-
tem. Then one would be led to Eq. (4) instead of Eq. (15). This
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Table 1
Specific heat ratios for some organic liquids at 25 �C and atmospheric pressure.

ðcp � cÞ=cp (%) ðc � cv Þ=cv (%) ðcp � cv Þ=cp (%)

Acetone ðC3H6OÞ 0.0087 40 29
Benzene ðC6H6Þ 0.0075 36 26
Ethanol ðC2H6OÞ 0.0074 37 27
Methanol ðCH4OÞ 0.0076 37 27
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reasoning is erroneous as the nature of the thermodynamic process
undergone by the fluid element is implicitly defined by the equa-
tion of state assumed, i.e. Eq. (3). This equation of state is based
on the hypothesis that the density may change only as a conse-
quence of temperature variations. In other words, one is assuming
that the set of stable equilibrium states available to the fluid ele-
ment are, with a very good approximation, at constant pressure.

4.2. The expansion–contraction work

A possible misleading argument in the deduction of Eq. (15) is
connected to the mechanical work term rijDij. This term, as it is
clearly explained in Chandrasekhar [6], must be simplified accord-
ing to the constraint satisfied by the velocity field, i.e. Eq. (1). On
the other hand, in some textbooks (see, for instance, Kundu and
Cohen [12]), a part of the mechanical work term rijDij, namely
the expansion–contraction work contribution, �p@ui=@xi, is rewrit-
ten by forgetting Eq. (1) and by using the exact local mass balance
instead,

�p
@ui

@xi
¼ p

q
Dq
Dt

: ð20Þ

If one brings this term to left hand side of the local energy balance
Eq. (8), then one has to evaluate

q
De
Dt
� p

q
Dq
Dt

ð21Þ

instead of qDe=Dt. Therefore, by following the thermodynamic
argument described in Section 3, one would have

qde� p
q

dq ¼ qcdT þ pbdT ¼ q cp �
pb
q

� �
dT þ pbdT ¼ qcpdT;

ð22Þ
where Eqs. (10), (13) and (14) have been used. On account of Eqs.
(20)–(22), one would be led to the formulation of the local energy
balance expressed by Eq. (7), instead of Eq. (15). However, this is
a tricky procedure, since the velocity field evaluated through the
Oberbeck–Boussinesq model is constrained to be solenoidal by Eq.
(1). Then, even if it is based on an exact mass balance, Eq. (20) can-
not be coherently invoked within the Oberbeck–Boussinesq
approximation.

4.3. The pressure work

One could evaluate the differential of the internal energy per
unit mass, de, by using the definition of enthalpy per unit mass,
h ¼ eþ p=q. Then, one has

qde ¼ qdh� dpþ p
q

dq: ð23Þ

If one assumes that the thermodynamic process undergone by
the fluid element is isobaric, then one has

dp ¼ 0; dh ¼ cpdT; dq ¼ �qbdT: ð24Þ

Then, Eq. (23) yields

qde ¼ qcpdT � pbdT ¼ q cp �
pb
q

� �
dT ¼ qcdT; ð25Þ

where Eq. (13) has been used. Eq. (25) leads directly to Eq. (15).
If one assumes that the thermodynamic process undergone by

the fluid element is isochoric, then one has

dq ¼ 0; dh ¼ cpdT þ @h
@p

� �
T

dp: ð26Þ

The thermodynamic identity

q
@h
@p

� �
T
¼ 1� bT ð27Þ

can be easily proved on the basis of the elementary thermodynamic
differential relationships [14]. The complete proof can be found, for
instance, in Ref. [13]. Therefore, by substituting Eqs. (26) and (27)
into Eq. (23), one obtains

qde ¼ qcpdT þ ð1� bTÞdp� dp ¼ qcpdT � bTdp: ð28Þ
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From Eq. (28), one justifies the relationship

q
De
Dt
¼ qcp

DT
Dt
� bT

Dp
Dt

: ð29Þ

Obviously, Eq. (29) leads to Eq. (6).
While the procedure based on Eqs. (23)–(25) and leading to Eq.

(15) is correct, the procedure based on Eqs. (23), (26)–(29) and lead-
ing to Eq. (6) is completely unjustified for the following two reasons.

� The process undergone by the fluid element cannot be consid-
ered as isochoric as already pointed out in Section 4.1.

� If one has to suppose that the process is isochoric, the straight-
forward reasoning is to assume the general validity of Eq. (9), so
that one is led to Eq. (4), as described in Section 4.1.

In other words, the misleading thermodynamic analysis behind
Eq. (6) adds an unjustified assumption (an isochoric process) to a
tricky procedure that replaces the simple conclusion

q
De
Dt
¼ qcv

DT
Dt

ð30Þ

with the more complicated one expressed by Eq. (29). This circum-
stance induces some reflections on how the erroneous assumption of
isochoric process can lead to ambiguous results, depending on the pro-
cedure followed. On the contrary, the assumption of isobaric process
leads exactly to the same result, i.e. Eq. (15), either if the reasoning
stems from the evaluation of de or, as in the present subsection, if
one works out the differential of the enthalpy per unit mass, dh.

5. On porous media

The remarks on the appropriate form of the local energy balance
in the framework of the Oberbeck–Boussinesq approximation can
be easily reformulated with reference to the theory of fluid satu-
rated porous media. In fact, following Nield and Bejan [16], the vol-
ume-averaged energy equations for the solid and fluid phases can
be written as

ð1�uÞðqcvÞs
@Ts

@t
¼ ð1�uÞksr2Ts þ HðTf � TsÞ; ð31Þ

uðqcÞf
@Tf

@t
þ ðqcÞf V i

@Tf

@xi
¼ ukfr2Tf þ lUþ H Ts � Tf

� �
; ð32Þ

where lU is the viscous dissipation term obtained through a vol-
ume average of the term 2lDijDij appearing in Eq. (15). As is well
known [17,18], the specific form of the term lU depends on the
momentum balance model adopted for the fluid saturated porous
medium. The inter-phase heat transfer coefficient H in Eqs. (31)
and (32) describes the thermal energy flow between the solid and
the fluid phase. Since reference is made to the Oberbeck–Bous-
sinesq approximation, all the solid and fluid properties in Eqs.
(31) and (32) are evaluated at the reference temperature T0. With
respect to Nield and Bejan [16], Eq. (32) has been adapted on the ba-
sis of Eq. (15) in order to include the thermodynamic coefficient c
defined through Eq. (13). In cases of local thermal equilibrium
between the solid phase and the fluid phase, Ts ¼ Tf ¼ T , one can
add Eqs. (31) and (32), so that one has

ðqcÞm
@T
@t
þ ðqcÞf V i

@T
@xi
¼ kmr2T þ lU; ð33Þ

where

ðqcÞm ¼ ð1�uÞðqcvÞs þuðqcÞf ;
km ¼ ð1�uÞks þukf : ð34Þ
6. Conclusions

The nature of the Oberbeck–Boussinesq approximation has
been revisited in order to clarify some thermodynamic aspects
connected to the formulation of the energy balance. The present
analysis, motivated by the manifold formulation of this balance
in the existing literature, leads to the following conclusions:

1. The energy balance for a fluid, within the Oberbeck–Boussinesq
approximation, is given by the equation

q0c
DT
Dt
¼ kr2T þ 2lDijDij;

where c ¼ cp � pb=q;
2. The thermodynamic coefficient c coincides with the specific

heat at constant volume, cv , for a perfect gas;
3. The thermodynamic coefficient c is definitely well approxi-

mated by the specific heat at constant pressure, cp, for a liquid;
4. No pressure work term of the type bTDp=Dt must be introduced

on the right hand side of the energy balance equation.

Finally, the most appropriate form of the energy balance for
buoyant flows in a fluid saturated porous medium has been
discussed.
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